YUSHCHENKO, Yekaterina Logvinovna; MALINCVSKIY, Boris Nikolayevich; FOLISHCHUK, Galina Andreyevna; YADRENKO, Engelina Konstantinovna; HIKITIN, Andrey Ivanovich;

[The "Dnipro" control computer with a wide range of applications and its programming programme programmer's manual]
Upravliaiushchaia mashina shirokogc naznacheniia "Dnipro"
i programmiruiushchaia programma k nei; spravochnik rrogrammista. Kiev, Izd-vo "Narkova dumka," 1964. 279 p.

(MIRA 17:8)

/ MISTER OF THE CONTRACTOR OF Hot [d] (EHI-2) For [1] - 1-4, Fo-4, Fo-Pk-4 | IJP(c) AFMO(p)/ASD(a)-5/ ACCEUSE IN NO AMAC46724 BOOK EARLOITATION (Usning the terma logvinovas; rinchenko, Tumara alekseyevna rogramming program with input address inagrage for the computer Frai-1; unugnammen a bandback (trugramminuyusamaaya programma s vkhodny a the angle year kom days meanthy' intled; sprayochark programmatas, Kiev, The care fundate 12 Mary 200 grown and the 14,000 copies printed. The following appropriate programmer, to applied traid, computer or gram PR-AU FURNISH AND COVERAGE: The algorithmic address language, developed in the institute of Lybernetics of the Ukrainian Anademy of Sciences, is suitable to describe artification and complex information-logic problems. The selection of the style of input address language latermines the complexity of the prost smins program CPP . This manual describes the programming program for the Contet concurer Brat-1 (FF-AU . As an input language for this programmang program, a style of audress language is used which requires the use of only the operational memory of the computer. Examples of program composition using First are given. The book is intended for engineers and mathematicians who wast to learn to use a computer without a programmer and can be useful to .. 17.

L 17593-65 Accession NR AM4046724		
atudents in a wide var puters and programming	iety of specialties who are te	iking the course on com-
TABLE OF CONTENTS Labr	dged]:	
on. i. input language	of the programming program PF	· AU 5
一 《 · · · · · · · · · · · · · · · · · ·	ng program for the computer Unorograms composed by the progr	al-1 21 amming program PP-AUj0
Co. III. Examples of a Appendices 7c	AF DIOETAM for the computer De	amming program PP-AUj0
On. III. Examples of page again Appendices 76 Bibliography 107	ng program for the computer Ur programs composed by the progr	amming program PP-AUj0
Co. III. Examples of a Appendices 76 Bibliography 107 GUB CODE: DT	ng program for the computer Ur programs composed by the progr	amming program PP-AUj0
On. III. Examples of a Appendices To Bibliography 107 OTHER, ONC	ng program for the computer Ur programs composed by the progr	amming program PP-AUj0

KULINKOVICH, A.Ye.; YUSHCHENKO, Ye.L.

Basic algorithmic language. Kibernetika no.2:3-8 Mr-Ap '65. (MIRA 18:5)

YUSHCHENKO, Ye.L. [IUshchenko, K.L.]

Automation of the process of composing programming programs. Dop. AN URSR no.6:715-717 165. (MIRA 18:7)

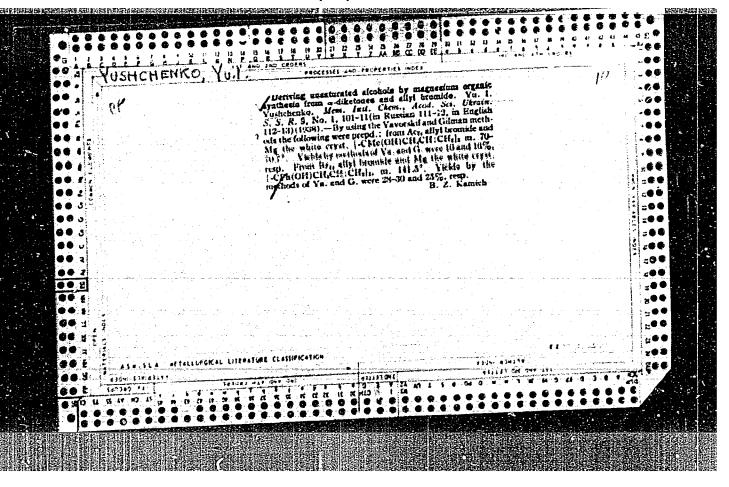
1. Institut kibernetiki AN UkrSSR.

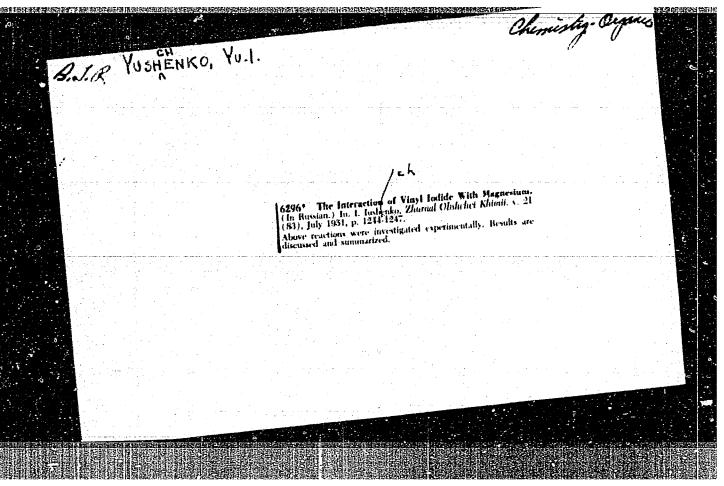
ACC NR: AM6016004 Monograph UR/

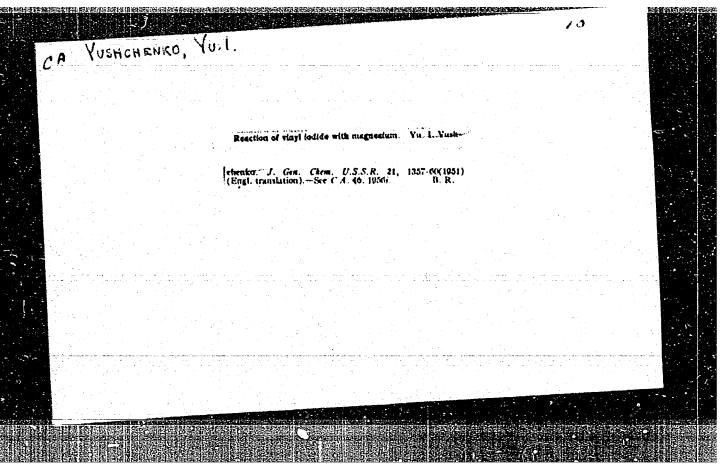
Babenko, Lyudmila Petrovna; Dovgopolaya, Lyudmila Ivanova; Korniyenko, Galina Hikhaylovna; YUahchenko, YEkaterina Logvinovna

Automatic programming system for the M-20 computer; translator from the address language. A manual (Sistema avtomaticheskogo programmiroveniya dlya mashiny M-20; translyator s adresnogo yazyka. Spravochnoye rukovodstvo) Kiev, Naukova dumka, 1965. 153 p. illus., biblio. (At head of title: Akademiya nauk Ukrainskoy SSR) 7750 copies printed.

TOPIC TAGS: computer language, computer programming, algorithmic language, machine language


PURPOSE AND COVERAGE: This book is intended for persons who use computers in their work or are engaged in the designing of automatic programming systems. The algorithmic address language used for describing computational, and information and logical processes, as well as the respective programming program developed at the Institute of Cybernetics, AN UkrSSR for the Soviet H-20 computer, are described in detail. Hethods of programming a program and examples of programming are reviewed. The automated programming system developed by the authors makes it possible to increase the calculation rate on the H-20 computer by a factor of 10 to 15.


Card 1/3


是是这种的情况的,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人	18680 1886
ACC NR AH6016004 TABLE OF CONTENTS:	
Foreword 3 Ch. I. Input language of the programming program (PP-M) 1. Description of the style of PP-M input address language 1. Distribution of working program memory 16 2. Distribution of working program address formulas 17 3. Special features of input language address formulas	5
Ch. II. The PP-M programmer 1. General information 21 2. Functional operation of the PP-M 22 3. Description of automatic coding unit algorithms 24 4. Description of programming unit algorithms 27 5. PP-M in computer codes 40	
Ch. III. Examples of programs compiled by PP-M 1. Calculation of a production plan based on a given yield program 86 2. Algorithm for the calculation of simple twin-numbers 91 3. Problem of assembling squares 94	
Appendices Card 2/3	

	1. 2. 3. 4.	Rule	for c	oding of t	informa he lette	r-perfo	PP-H rator	is langua internal 140 computer	language	- 139 -	
SUB	CODE	09/	SUBM D	ATE:	1980465	/ ORIG	REF	007			
										•	
Cored	3/3										

"APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R001963230004-3

	OVA, H.		cuun Punp.	" Cand P	ys-nath	Sci, Nath	ema vics I	nst ine.	ni 7. A	 	
Stklov, A	Load S/i	US3R, 11 F	eb 54. Di	ssertatio.	i (Vecher	nyaya ilosi	kva Mosc	ou, 2 F	ab 54)		
50: SU.1	196, 19	Aug 1954					-				
										4, ·	
							**** ***		• • • • • • • • • • • • • • • • • • •		
							•				
									الشريز المساي		
								,	i e		

Jushine Vacuum pump

Card 1/1

Pub. 153 - 19/24

Author

: Skobelkin, V. I., and Yushchenkova, N. I.

Title

: Theory of the vapor-jet vacuum pump

Periodical

: Zhur. tekh. fiz., 24, No 10, 1879-1891, Oct 1954

Abstract

: The authors investigate the interaction between the gas to be pumped out and the supersonic vapor jet. They clarify the mechanism governing the process and thus are enabled to calculate the speed of pumping out of the gas and to determine the influence of the various parameters upon this speed. They note that their results differ from those obtained by

the USSR authors Lifshits and Rozentsveyg (ibid., No 8, 1952).

Institution : -

Submitted: April 3, 1953

Category : USSR/Atomic and Molecular Physics - Gases

Abs Jour : Ref Zhur - Fizika, No 1, 1957 No 932

Author

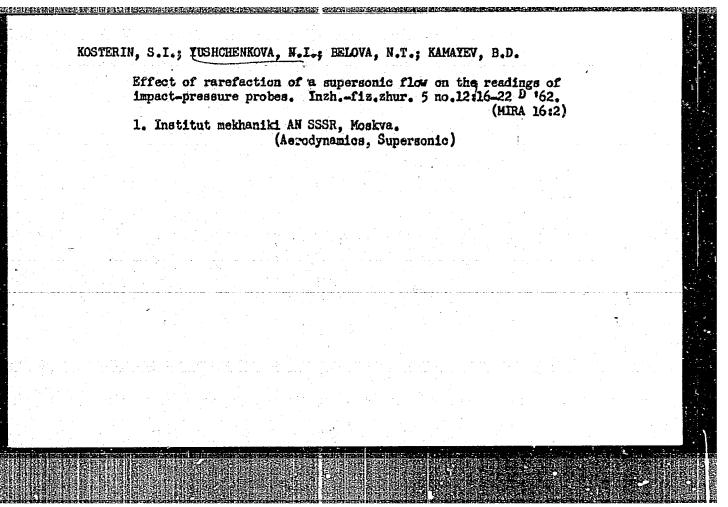
: Skobelkin, V.I., Yushchenkova, N.I. : Corrections to Article "Theory of Vapor-Jet Vacuum Pump." Title

Orig Pub : Zh. tekhn. fiziki, 1955, 25, No 2, 66

Abstract : Refers to Ref. Zhur. Fiz. 1955, 8952

Card : 1/1

APPROVED FOR RELEASE: 09/19/2001


Englishing 5.1., Nu.A. Monhamove, Calculation of Secretarize and of Heat Exchange in a Sirais of thecognessed Light in the Presence of a Positive Pressure Gradient	Digitor, G.P., Conditions for Espressiting Seating Systems Divisions of the Division of the Structure, M. Ye. Stimmer. In Straight Tubes at Each Pressure.	Longlyre, A.L. Calculation of Turbulest Congressed Cas Around a Fist Flate Yuhthrolom, E.L. Investigation of the	domankin, v.I., M.S. Libkind, Comission for the sizaton of Licettinal Energy of the Power England, H. Erchichmorekty Delloy, B.E. Coefficients of Hydraulic Sesion of Cas-Liquid Mixtures in Vertical Tubes	Englorally, 0.7, 0. T. Milliowrich. The Light of the Milliowith Barton Will Direct Regulation of England Regulation of England Regulation of Committee Confederation of Committee Confederation Committee	brounds, 1.14. Assert Character Transistent State Control of the Control of Control	Libring, M.S. Static Condensor for Transars. Distance to Transarsion.	Designation of the Every States with the Extra States of the Every States of the Every States of the Every States of the Every Long-Divisions of the Every States of t	Mastricty is sure segment. Lighter, 2-37, I.K. Disskin and A.O. Moras I crop caltiration in the units	Enhants A.D. Hebbds of Determining recommendation of Technology and Research State and Property of Pro	Mithapler II. Some Operial Features Wiver Engineering in the U.S.A.	complete the collection contains siny extend by frome extends on a contains of the vectors of the relation of the collection in the field of pour anglessing problem of the regional development of electrical and therein power extinential development of electrical and the problem of the regional development of electrical the physics of encountries. To present the physics of encountries, to present the manufacture of encountries.	Casiate of Twomical Sciences, N.N. 1808 and I.E. Sumbirs. PRINCE: Tale collection of articles is int of imagestoin C.N. Erabithmorrhiy.	Bis, of Politable House: R.D. Leftundis, P.F. Eddow, P.T. Doblow, and B.M. Hopfins; Peds, M.J. T.A. Prophory, Elizardai Society A.F. Tyters, Landwelding (Deceased), F.I. Pophor (Born, M.) Corresponding Member; Landwelding of Holonous (Bidg. F.I. Pophor, A.S. Personnical Sciences, B.E. Dill B.F. Christmann, R.B. Beglemons, Cardinate of Technical Sciences, B.E. Dill B.F. Christmann, R.B. Beglemons, Cardinate of Technical Sciences, B.E. Dill B.F. Christmann, R.B. Beglemons, Cardinate of Technical Sciences, B.E. Dill B.F. Christmann, R.B. Beglemons, Cardinate of Technical Sciences, B.E. Dill B.F. Christmann, R.B. Beglemons, Cardinate of Technical Sciences, B.E. Dill B.F. Christmann, R.B. Beglemons, Cardinate of Technical Sciences, B.E. Dill B.F. Christmann, R.B. Beglemons, Cardinate of Technical Sciences, B.E. Dill B.F. Christmann, R.B. Beglemons, Cardinate of Technical Sciences, B.E. Dill B.F. Christmann, R.B. Beglemons, Cardinate of Technical Sciences, B.E. Dill B.F. Christmann, R.B. Beglemons, Cardinate of Technical Sciences, B.E. Dill B.F. Christmann, R.B. Beglemons, Cardinate of Technical Sciences, B.E. Dill B.F. Christmann, R.B. Beglemons, Cardinate of Technical Sciences, B.E. Dill B.F. Christmann, R.B. Beglemons, Cardinate of Technical Sciences, B.E. Dill B.F. Christmann, R.B. Beglemons, Cardinate of Technical Sciences, B.E. Dill B.F. Christmann, R.B. Beglemons, Cardinate of Technical Sciences, B.E. Beglemons, R.B. Beglemons, Cardinate of Technical Sciences, B.E. Beglemons, R.B. Beglemons,	Problemy energetiti; aborati posymatografys of (Problems of Power Engineering) Calibration of (Problems of Power Engineering) Mossow, 1759. 6,500 copies printed.	disdesilys unit 880%. Energetichently institut	
of Deristance and of Liquid to the Presence 403 38	tent Vith Flame	Prieticu in the Flow of • 337 Structure of an Arially- 414 Charleston	Comission for the impositance Trans- et the Francisco Explanation in Francisco Indiana Communication in Francisco Indiana Indi	The Last of Surface Stability of 271 Regulation of Europeanies 271 Regulation of Europeanies Observation of 201 For Substity 201	of Emilia Industria	of Ling-		r Field	d E	tent Seveligens in	effice of them establish onk effices only this problem I want anglesering problem I want anglesering problem I want annual power englesering I want annual power englesering and arrifices. Bo presentities	miled es a tribute to the menty	urtualis, P.F. Bolow, P.E. Dablow, and L. Pauldoni, Elizardia L. Parlers, L. Pauldoni, Elizardia Cherdia A.F. Tafata, Poptor (Bro., LL.) Enterpodicia, Mender; Petris, A.E. Promodiziani, M.A. Eriptorichi, Cathiarte of Teominal Sciences, N.E. Eribor, Cathiarte of Teominal Sciences, N.E. Eribor,	og eradent die friitherminen of forticles believed to fre- 5. 52 p. Erate elly inserted.		

N.J.

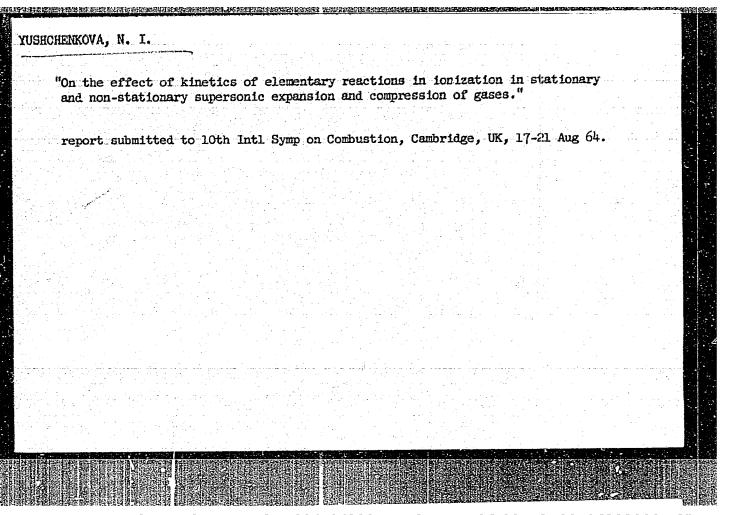
YISHCHENKOVA, and KOSTERIN, S. I.

"Structure and Interaction of Supersonic Vapour Streams in Vacuum."

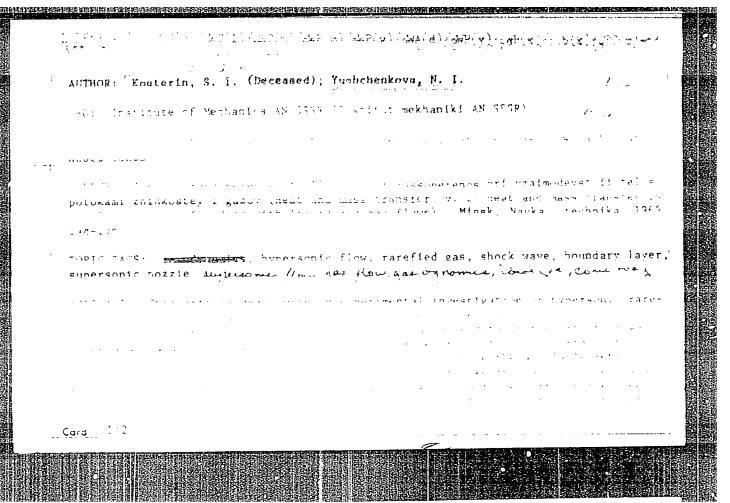
Report submitted for the Conference on Heat and Mass Transfer, Minsk, BSSR, June 1961.

YUSHCHENKOVA, N. I.; KOSTERIN, S. I.

"On the effect of kinetics of elementary reactions on ionization in stationary and non-stationary supersonic expansion and compression of gases."


report presented at the 10th Intl Combustion Symp, Cambridge, UK, 17-21 Aug 64.

Inst of Chemical Physics, AS USSR, Moscow.


KOSTERIN, S.I.; YUSHCHENKOVA, N.I. (Moscow)

"Effect of kinetics on ionization at stationary and non-stationary supersonic extension and at instantaneous compression of a gas."

report presented at the 2nd All-Union Congress on Theoretical and Applied Mechanics, Moscow, 29 Jan - 5 Feb 64.

"The influence of wall temperature on a supersonic rarefied flow around a sharp cone."
report submitted for 2nd All-Union Conf on Heat & Transfer, Minsk, 4-12 May 1964.
 Mechanics Inst, AS USSR.
*Deceased

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R001963230004-3"

	ver at low Re numbers	The results of	the investigation	n carried
with boundary lay		্য বি চাল্ড ক্রাক্সাল	tor May We: = 1.	
		; .; .; .; .; .; .; .; .; .; .; .; .;		
acute of the act.	umaka ka Kaja (4manpada ngoja)	e wore used to gen		
			•	and the second
Increase grows #	iin qecicacing com w		Adally by the en	rface bres-
		- P. 기 (전 기계 개최한 취임점(편점	. 14114	, , are pres
				·
			• • •	
3		•		
STB GLDE: 257 :	SUBM DALL: 99Nevpo.	trib SET. SMET	old all sol	ATT 11727
				4201
,				and the second s
				1
				:-
Cord 2/2				

ACC NR. AP6036755

SOURCE CODE: UR/0020/66/171/001/0065/0068

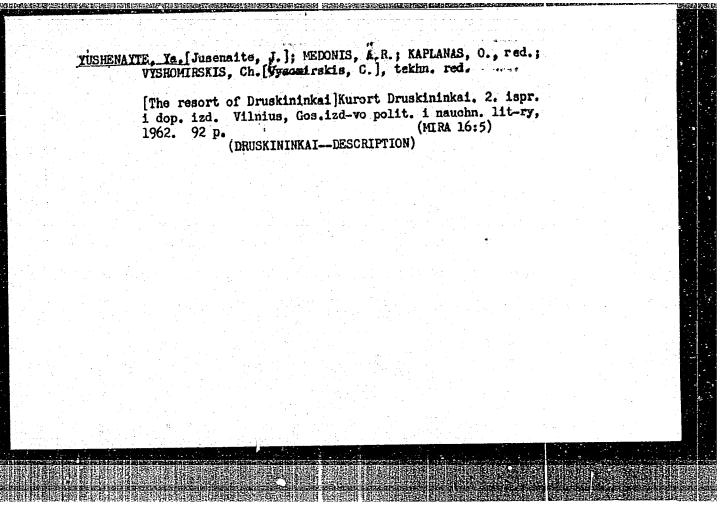
AUTHOR: Zel'dovich, Ya. B. (Academician); Kormer, S. B.; Krishkevich, G. V.; Yushchko, K. B.

ORG: none

TITLE: The problem of the smoothness of the detonation front in a liquid explosive

SOURCE: AN SSSR. Doklady, v. 171, no. 1, 1966, 65-68

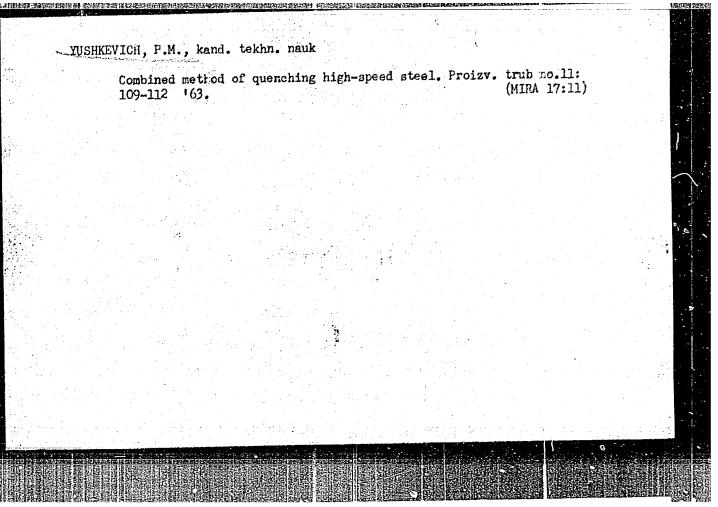
TOPIC TACS: shock wave, detonation front, detonation front profile, detonation front reflectivity, detonation front reflecting loss, liquid explosive

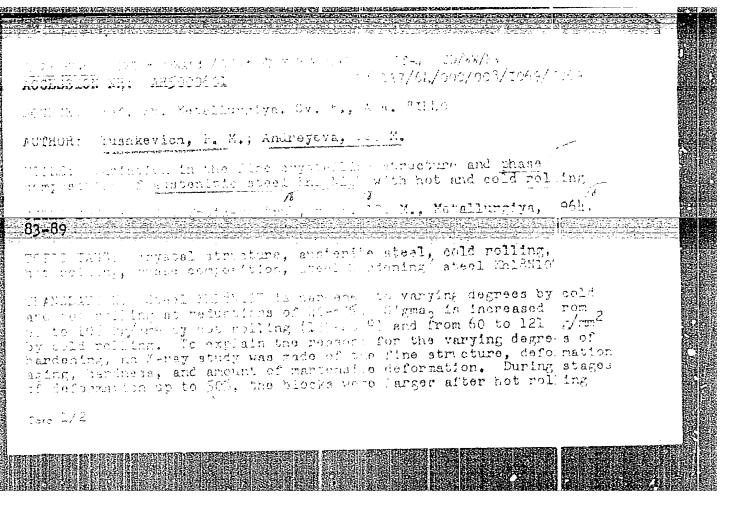

ABSTRACT: An analytical investigation of the light reflectivity of the detonation front in a liquid explosive (a mixture of nitric acid and dichloroethane) is presented, to explain the deviation of the experimental values of the reflection factor from the values calculated on the basis of the change of the refractive index in the wave front. The analysis uses earlier experimental data and yields a semi-quantitative description of the phenomenon as based on the wave theory of light reflection. The difference between the observed and calculated values of the reflection index, the analysis shows, can be ascribed to a certain degree of roughness on the detonation front comparable to the wavelength of the incident light. The degrees of roughness and the corresponding losses of reflected light intensities within the full range from purely specular to fully diffuse reflection were

Card 1/2

UDC: 532.5+535.5

established. Conversely, the measured intensities of reflected light and dependence of the diffusely reflected portion on the angle of incidence characterize the degree and the average period of the roughness of the detonation front. The character of the roughness proved to be stationary under given conditions of detonation, while per turbations of higher orders leveled off very quickly. The deviation of the detonation front from a perfect specular surface is considered proven. The actual origin of the deviation, however, remains to be determined. At present, two explanations are considered possible: either it is a phenomenon resembling that observed earlier with gaseous detonation and only modified for the higher density of liquids; or it is initiated by inhomogeneities in the zone of chemical reaction, although no feedback of these fluctuations on the process of reaction has been observed. The use of the laser beam as a light-source is being considered for a more detailed investigation of the profile of the detonation surface. Orig. art. has: 3 figures and 1 table.	
SUB CODE: 20/ SUBM DATE: 18Jul66/ ORIG REF: 004/ ATD PRESS: 5107	


APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R001963230004-3'


APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R001963230004-3"

YUSHENAYTE, Ya. P., Cand Med Sci -- (diss) "Treatment of hypertens of patients at Druskininkay Health Resort." Vil'nyus, 1958. 23 pp (Acad Sci Lithuanian SSR, Inst of experimental Medicine), 250 copies (KL, 35-58, 110)

-64-

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R001963230004-3"

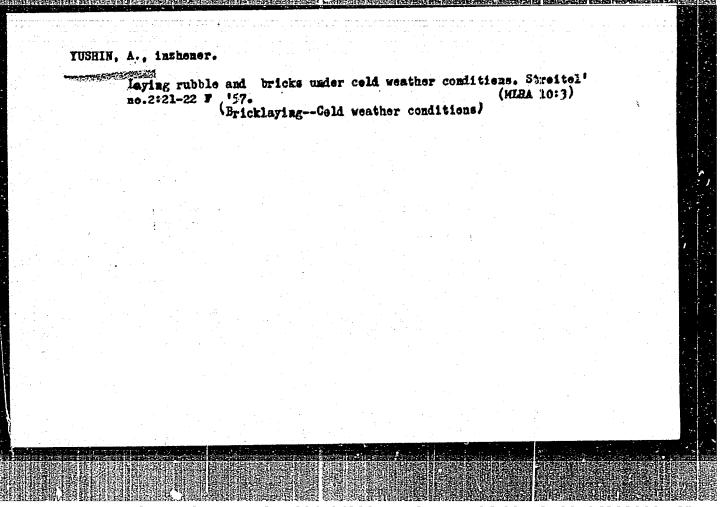
5 23 32 2 WG

ACCESSION NR: AR5000601

20

than after cold rolling. With hot rolling to reductions more than 50%, the type II stresses are smaller than with cold rolling but the blocks are more broken up. Deformation aging was evaluated by a decrease in the gamma lattice period and was identical for both hot and cold rolling. With increase in the temperature of hot rolling the amount of martensite deformation formed decreases and becomes equal to zero at 2000 (point M_d). Thus the authors explain the fact that steel hardens more after cold rolling by the blocks breaking up, the increase in the density of the dislocations measured by X-1 ay, and the formation of martensite deformation. 3 figures, 11 liverature titles. Yu. Andreev.

SUB CODE: NM


ENCL: 00

Card 2/2

YUSHKEVICH, P.M., kand. tekhn. nauk; ANDREYEVA, Ye.M., inzh.

Change in the fine crystal structure and phase composition of Kh18N1OT austenitic steel during hot and cold rolling. Proizv. trub no.12:83-89 164.

(MIRA 17:11)

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R001963230004-3"

Author: <u>Iushin</u>, A. A.

Title: <u>Plasticity</u>. (Plastichnost:.)

City: Koscou:

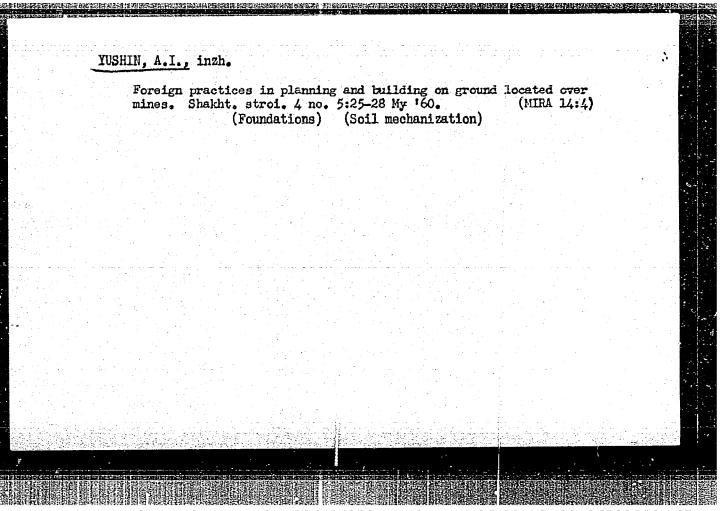
Publisher: State Printing House of Technical and Theoretical Exterature

Date: 1948

Available: Library of Congress

Source: Konthly List of Russian Accessions, Vol. 4, ko. 1, p. 19

TUSHIN, A.A.


Causes of increased consumption of crankcase oil by the EDM-46 engines. Hauch.trudy Inst.mash.i sel'khoz.mekh.AN UBSR 6: 115-124 '58. (MIRA 13:4)

(Tractors--Engines)

YUSHIN, A.A., kand.tekhn.nauk Study of the effect of special design features of the MTZ-52 tractor on its dynamic and operational indices. Trakt. i sel khozmash. 32 no.7: 4-6 Il *62. (MIRA 15:7) 1. Ukrainskiy nauchno-issledovatel*skiy institut mekhanizatsil i elektrifikatsii sel*skogo khosyaystva. (Tractors)

HULLER, R.A.; YUSHIN, A.I.

"Temporary technical specifications on designing and building in areas being undermined." Reviewed by R.A. Muller, A.I. IUshin. (MIRA 11:11) Shakht.stroi. no.10:35-36 (Building) (Mining engineering)

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R001963230004-3"

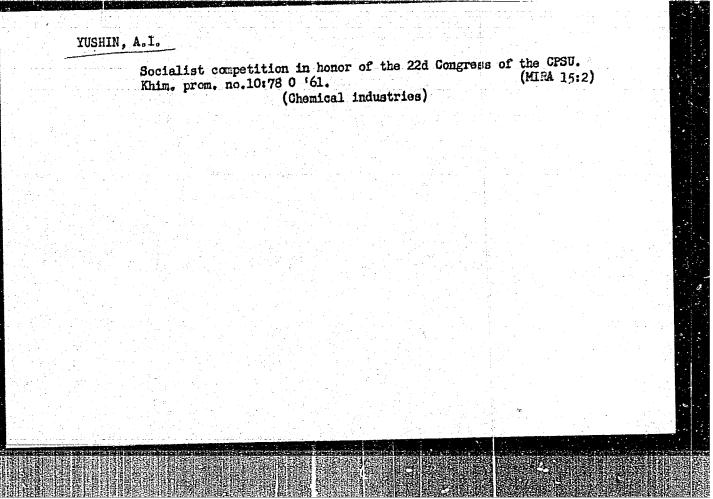
MULIER, R.A., kand.tekhn.nauk; YUSHIN, A.I., inzh.; MELAMUT, L.Sh., inzh.

Temporary technical specifications for planning and constructing buildings and structures on ground located over mines. Shakht.stroi.

4 no. 5:294-30 My 160. (MIRA 14:4)

(Foundations) (Soil mechanics)

(USHIN, A.I.; VODOP'YANOV, V.N.; GITEL'MAN, M.V.; GRODZISKIY, L.I.


Designing a group of industrial buildings taking into account the deformation of foundations caused by underground workings.

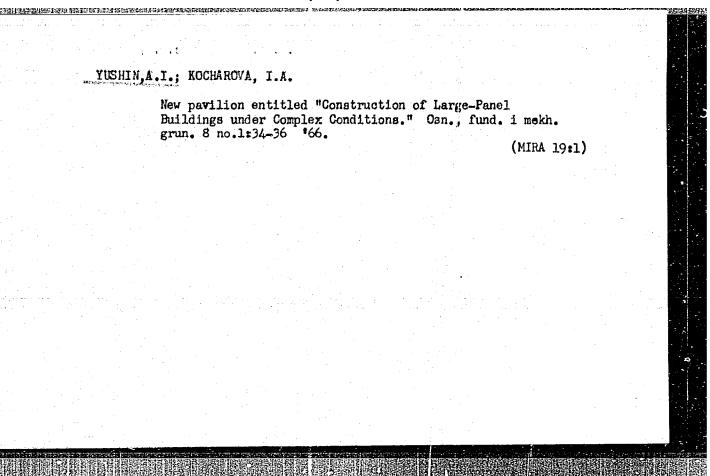
Prom. stroi. 38 no. 12:35-39 '60. (MRZ 13:12)

1. TSontrogiproshakht (for Yushin), 2. Khar'kovskoye otdeleniye Prometroproyekt (for Godzinskiy).

(Foundations) (Industrial buildings)

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R001963230004-3"

YUSHIN, A.I. (Moskva)

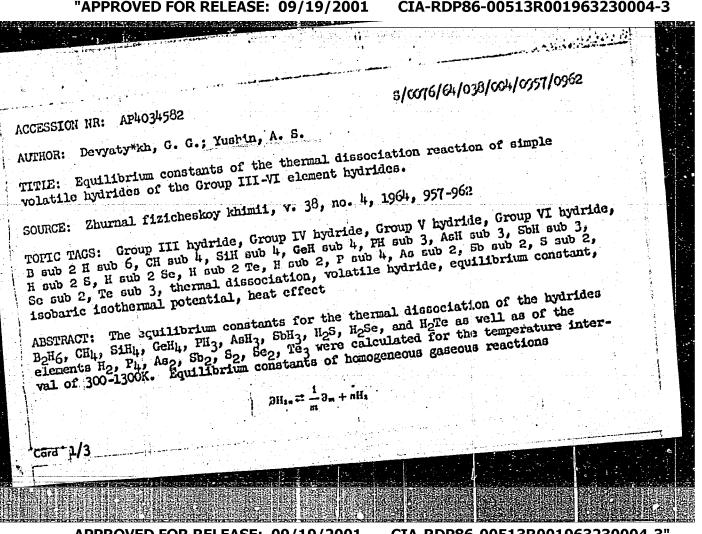

Design of residential and industrial buildings for uneven settling of the foundation. Stroi. mekh. i rasch. soor 4 no.1:40-44 '62. (MIRA 16:12)

KOLBENKOV, S.P.; MEDYANTSEV, A.N.; IOFIS, M.A.; KOROTKOV, M.V.;

MULLER, R.A.; YUSHIN, A.I.; MELAMUT, L.Sh.; KARGIN, G.P.;

GERTNER, P.F.; ZARETSKIY, K.S.; CHECHKOV, L.V., red.izdva; MAKSIMOVA, V.V., tekhn. red.

[Designing, constructing, and protecting buildings and structures on foundations undercut by mining] Proektirovanie, stroitel'stvo i okhrana zdanii i sooruzhenii na podrabatyvaemykh territoriiakh. Moskva, Gosgortekhindat, 1963. 451 p. (MIRA 16:8)


TIMOFEYEV, S.V.; YUSHIN, A.I.; SHVEDOVA, S.N.

Study of the joint action of grillage and wall panels standing on the full-scale reinforced concrete units. Osn., fund. i mekh. grun. 7 no.5:18-21 65. (MIRA 18:10)

STARITSYN, A.P., inzh., red.; MULLER, R.A., kand. tekhn. nauk, red.; YUSHIN, A.I., red.

[Instructions for designing buildings and structures on areas undercut by mining] Ukazaniia po proektirovaniiu zdanii i sooruzhenii na podrabatyvaemykh territoriiakh (SN 289-64). Izd. ofitsial'noe. Moskva, Stroiizdat, 1965. 81 p. (MIRA 18:6)

1. Russia (1923- U.S.S.R.) Gosudarstvennyy komitet po delam stroitelistva. 2. Gosstroy SSSR (for Staritsyn). 3. Vsesoyuzmyy nauchno-issledovateliskiy institut gornoy geomekhaniki i marksheyderskogo dela (for Muller). 4. Nauchno-issledovateliskiy institut osnovaniy i podzemnykh sooruzheniy Gosstroya SSSR (for Yushin).

ACCESSION NR: AP4034582

were calculated by the statistical method from spectral characteristics of the molecules by the equation:

 $K_{\rm P_I} = \frac{Q_{\rm om}^{1/m} Q_{\rm H_I}}{Q_{\rm oH_{am}}} e^{-\Delta H_{\rm of}^{*}/RT}, \quad \bullet$

where Q_{J_m} , Q_{H2} , $Q_{5\,H2n}$ are the statistical sum of elements as gas (5_m) , bydrogen and hydride, T is in $^{\circ}$ K, ΔW_{T} is the energy of dissociation of the hydride to the element and hydrogen. For reactions where the element separates as a solid:

Ollan = Den + nlla,

equilibrium constants were calculated from:

$$R \ln K_{p_{ff}} = \Delta \Phi^* - \frac{\Delta H^*_{eff}}{I}$$

$$\Delta \Phi^* = \Phi^*_{p_{ff}} + n\Phi^*_{p_{ff}} - \Phi_{p_{ff}}$$

Where AD = D + nD H - D BH 14

Cord 2/3

APPROVED FOR RELEASE: 09/19/2001

CIA-RDP86-00513R001963230004-3"

"APPROVED FOR RELEASE: 09/19/2001

CIA-RDP86-00513R001963230004-3

where $Q^* = -(Z^\circ - H^\circ_0)/T$, corrected isobaric-isothermal potential of the element or compound, ΔH°_0 II is the heat effect at 0 K. All values are tabulated. The equilibrium constant values are graphically reviewed. All the hydrides except the equilibrium constant values are graphically have a description of the element. methane, phosphine and hydrogen sulfide are completely broken down to the element and hydrogen in the given temperature range. Orig, art. has: 7 tables, 2 figures and 8 equations.

ASSOCIATION: Gor'kovskiy gosudarstvenny*y universitet im. N. I. Labachevskogo

(Gor'kov State Iniversity)

ENCL:

SURVITTED: 25 reb63

OTHER:

SUB CODE:

NO REF SOV:

SOV/124-58-10-11249

Translation from: Referativnyy zhurnal, Mekhanika, 1958, Nr 10, p 79 (USSR)

AUTHOR

Yushin, A.Ya.

TITLE:

Experimental Investigation of the Local Heat Transfer of a Mixed Flow of Liquid in a Circular Tube (Eksperimental'noye issledovaniye mestnoy teplootdachi pri smeshannom dvizhenii zhidkosci v krugloy trube)

PERIODICAL: Sb. statey nauchn. stud. o-va Mosk. energ. in-ta, 1957, Nr 10, pp 164-177

ABSTRACT:

The paper is devoted to the investigation of the local heat transfer in the initial section of the tube when there are sections of laminar, transitional, and turbulent flows in the tube. Visual investigation on Reynolds apparatus of the transition phenomena of laminar flow into turbulent flow under isothermal conditions of liquid flow in the tube were conducted prior to undertaking experiments on the heat transfer. These observations showed that the transition-point position depends substantially on the value of RD and the conditions of entry into the tube, i.e., in a tube with a sharp-edged inlet the transition point starts much earlier than in a tube with a faired inlet.

Card 1/2

SOV/124-58-10-11249

Experimental Investigation of the Local Heat Transfer (cont.)

Heat-transfer investigation was conducted according to the B.S. Petukhov method of the thick-walled tube. The value of RD varied from 3000 to 12,000 in the course of the experiments. Under conditions of smooth entry into the tube the distribution of local value of ND along the length of the tube shows a clearly defined minimum corresponding to the incipience of the transitional region; its average position can be defined by the value of R_{crit} 52,000. This result coincides fully with the results of similar experiments carried out by Petukhov and Krasnoshchekov. Six experiments were conducted under conditions of a sharp-edged inlet into the tube the results of which are represented in the form of graphs. These experiments have shown that all other conditions being equal heat transfer depends substantially on the form of the inlet. Under conditions of a sharp-edged inlet the local values of ND in the initial sector are considerably higher than under conditions of a faired inlet, although in the main section of the tube these values practically coincide. Bibliography: 4 references.

V.V. Kirillov

Card 2/2

8/096/60/000/010/013/022 E194/E135 11,4300 Sukomel, A.S., and Yushin, A.Ya., AUTHORS: Petukhov, B.S., Strigin, B.K. Experimental Investigation of the Heat Exchange Aduring the Flow of Mercury in a Round Pipe in the TITLE: Laminar and Transitional Regions PERIODICAL: Teploenergetika, 1960, No 10, p 95 The investigation was carried out at low values of Reynolds number with a constant density of thermal flow through The experimental results are given in the form of generalised relationships covering the range of Reynolds numbers from 620 to 23,500 at P_{θ} from 14 to 600. The experimental results are compared with those of other authors. ASSOCIATION: Moskovskiy energeticheskiy institut (Moscow Power Institute) Card 1/1

21,231

\$/143/61/000/007/002/004 1053/D113

AUTHORS:

Sukomel, A.S., Candidate of Technical Sciences, Docent;

Yushin, A.Ya. and Strigin, B.K., Engineers

Investigation of the heat exchange during mercury flow in a TITLE:

round pipe at small Pecle numbers

Izvestiya vysshikh uchebnykh zavedeniy. PERIODICAL:

1961, 79-85

TEXT: Experimental results are given of the heat-exchange investigation during mercury flow in a round pipe at small Pecle numbers (N_p). This investigation was carried out because little is known of the heat exchange during the flow of liquid metals in tubes, especially at small $N_{
m p}$ values.

The heat transfer was studied during the flow of mercury in laminar and transition regions under hydrodynamically and thermically stable conditions, and at a constant heat-flux density acting upon the pipe walls. The experimental setup (Fig. 1) consisted of (1) a round calibrated pipe made of soft carbon steel, 7.24 mm in internal diameter, 12.03 mm in external diameter, 1,504 mm long, and connected by rubber hoses with two mercury tanks; card 1/64

24231

S/143/61/000/007/002/004 D053/D113

Investigation of the heat exchange...

(2) an electric heater coaxially mounted with the 504 mm long working portion of the pipe (1); (3) a coaxial vacuum chamber; (4) four coaxial heat shields and from aluminum foil; (5) a thermostat; (6) a mercury mixer; auxiliary heaters (7 and 8); (9) a mercury cooler; (10) an electric motor for moving up and down the mercury tanks; and (11) a stroboscopic tachometer. The heat transfer was measured by 7 thermocouples afixed to the pipe (1). The heat-transfer coefficient was determined by the formula:

$$\alpha = \frac{q_1}{\pi d\Delta t}$$

where q_1 is the density of heat flux relative to the unit length of the pipe under test; d is the internal diameter of the pipe; and Δt is the calculated thermal head at the given cross-section. The heat-transfer measurements were conducted in the range from N_p 14 to 600, which corresponds to the range of Reynolds numbers from N_{Re} 620 to 23,500 or to the Prandtl numbers: N_{Pr} 0.021 $\frac{1}{2}$ 0.026. The results obtained indicate that the heat transfer in Card 2/R4

24231 8/143/61/000/007/002/004 D053/D113

Investigation of the heat exchange...

the laminar region corresponds to the theoretical relationship

$$N_{Nu} = 4.36$$
; (1)

where N_{Nu} is the Nusselt number. The formula (1) is true for $N_{Re} \lesssim 2,300$, which corresponds to $N_{p} \lesssim 55$. The heat transfer in the transition region (Fig. 2) is described by the interpolated dependence

$$N_{Nu} = 4.36 + 0.0053N_p$$
. (2)

Deviations of the experimental N_{Nu} values from the formula (2) do not exceed 5%. This formula (2) is true for N_{Re} values from 2,300 to 23,500, which correspond to the N_P values from 55 to 600. The experimental data obtained for N_P > 400, or N_{Re} > 16,000 coincide with the formula N_{Nu} 5 + 0.014N_P 0.8, the error being + 5% (3).

Card 3/64

24231 S/143/61/000/007/002/004 D053/D113

Investigation of the heat exchange...

This formula (3) describes the heat transfer of liquid metals during a turbulent flow (Ref. 5 and Ref. 6). It was derived by the Energeticheskiy institut AN SSSR (Power Engineering Institute of the AS USSR). There are 3 figures and 6 references: 4 Soviet-bloc and 2 English references. The references to the 2 English-language publications read as follows: B. Lubarsky and S.J. Kaufman, Report NACA No. 1270, Washington, 1956; H.A. Johnson, J.P. Hartnett, and W.J. Clabaugh, Trans. ASME, vol. 76, No. 4, p. 513, 1954.

ASSOCIATION: Moskovskiy ordena Lenina energeticheskiy institut (Moscow "Order of Lenin" Power Engineering Institute).

SUBMITTED: July 13, 1960

Card 4/49

الاوس

s/020/61/136/006/016/024 B104/B204

21,4240 11.3950 AUTHORS:

Petukhov, B. S. and Yushin. A. Ya. Heat exchange in the flow of a liquid metal in laminar

TITLE:

and intermediate regions

Doklady Akademii nauk SSSR, V. 136, no. 6, 1961, 1321-1324

TEXT: By means of the experimental arrangement shown in Fig. 1, the TEXT: By means of the experimental arrangement shown in rigs is the thermal heat exchange was studied on mercury with hydrodynamic and thermal heat exchange was studied on mercury with hydrodynamic and thermal heat exchange was studied on mercury was nuring filling margury was nurified by neat exchange was studied on mercury with nydrodynamic and thermal stabilization of the flow. During filling, mercury was purified by attails tion and the two containers were filled with argon from which argon from the two containers were filled with a grant the two containers were filled with a grant the two containers were filled by PERIODICAL:

stabilization of the flow. During filling, mercury was purified by attack of the flow containers were filled with argon from which distillation, and the two containers were filled with argon from was calculated oxygen had been removed. The heat transfer coefficient was calculated oxygen had been removed. And \triangle t, where q_1 is the density of the heat flow from the relation $\alpha = q_1/\pi d \triangle$ t, where q_1 (koal/m.hr) per unit length of the test tube; d is the inner diameter (kcal/m.hr) per unit length of the test tube; d is the inner diameter and the tube; At = two this, where two is the wall temperature, and the the tube; of the tube; the liquid temperature in a certain cross section. A correction of the the liquid temperature in a certain cross section. The takes heat the liquid temperature in a calculated. Is discussed. Which takes heat relation, from which t. is calculated.

the liquid temperature in a certain cross section. A correction of the relation, from which thin

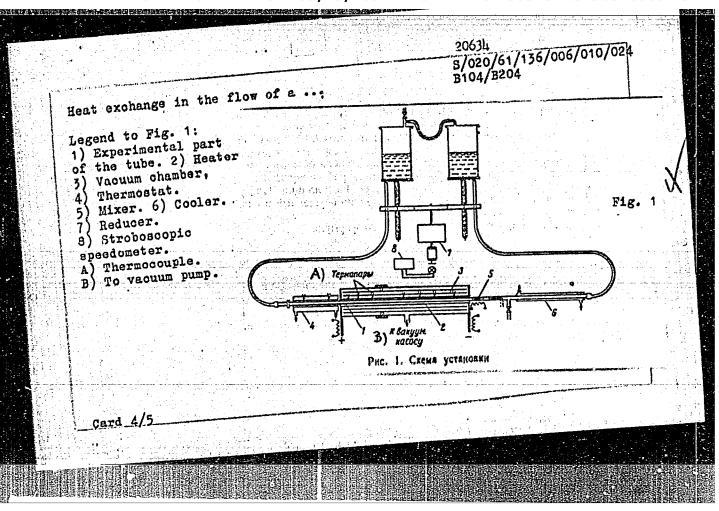
Card 1/5

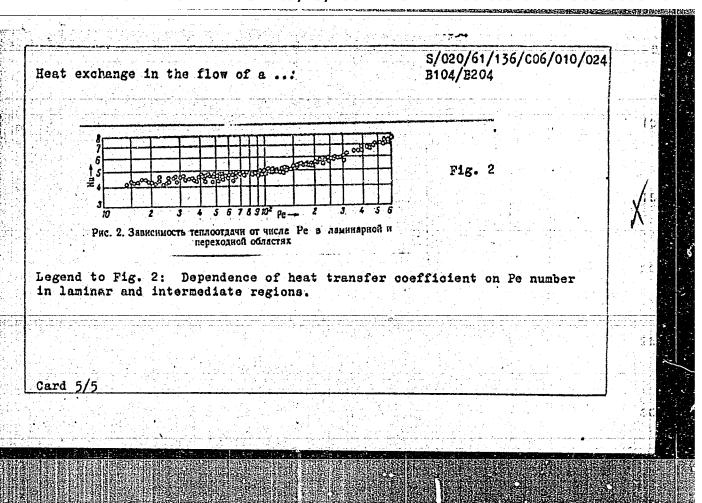
APPROVED

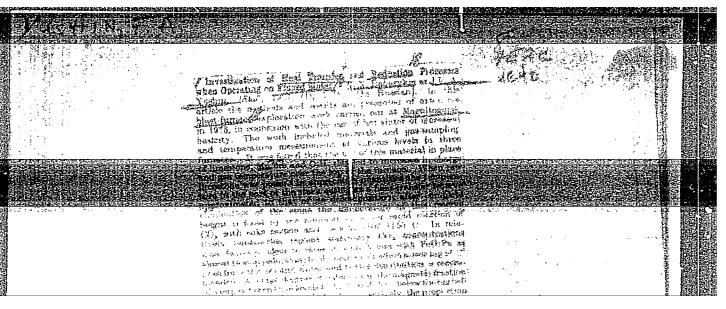
s/020/61/136/006/010/024 B104/B204

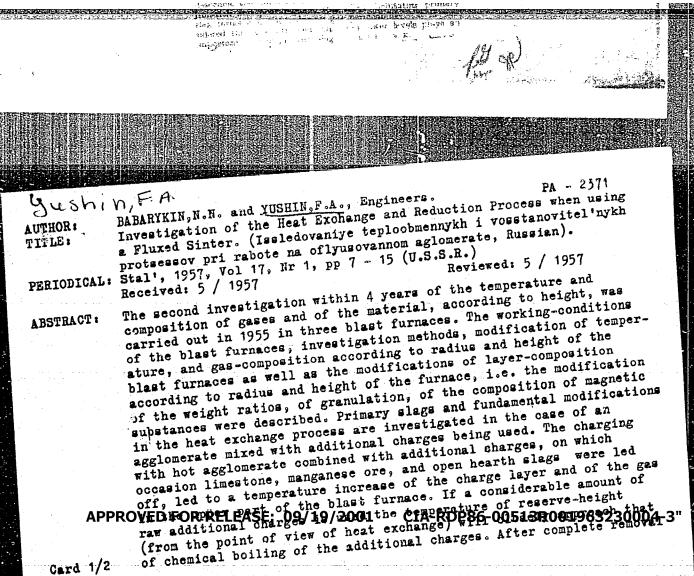
transfer through the mercury and the tube in the longitudinal direction Heat exchange in the flow of a . into account. For the purpose of further reducing the effects produced by heat transfer in the longitudinal direction, the heat transfer ov near transfer in the longitudinal direction, the near transfer coefficients were determined in cross sections which were at a distance of 19 d and 43 d from the beginning of the heated section of the tube. Thus, the numbers determined here are limits, i.e., they are minimum values. Tests with turbulent water showed satisfactory results. The experiments with mercury were carried out in the following ranges: The experiments with mercury were carried out in the following ranges:

Pe from 14 to 600, Re from 620 to 23,500 (Pr = 0.021 + 0.026). In


Fig. 2, the Nu number is graphically represented as a function of the Pe number. As may be seen, Nu = 4.36 for the laminar region, and Nu = re number. As may be seen, no a 4.70 for the laminar region, and no see 4.36 + 0.0053 Pe for the intermediate region. It is further noted that the results obtained here agree with an accuracy of 15% with the formula Nu = 5 + 0.014 Pe with Pe \$\frac{1}{2} 400 (Re \$\frac{1}{2} 1600) developed by the Energeticheskiy institut AN SSSR (Institute of Power Engineering of the AS USSR). It may further be seen that at the critical Reynolds number Re cr = 2300 no considerable change of the dependence of the Nu number upon the Pe number occurs. Finally, the effect of cross grooves in the


Card 2/5


CIA-RDP86-00513R001963230004


5/020/61/136/006/010/024 B104/B204 tube upon the heat transfer is investigated. It is found that as a result Heat exchange in the flow of a of these cross grooves, considerable irregularities in the distribution of q over the experimental length of the tube occur, and that the use of cross grooves is not convenient at small Pe numbers, because this may cause considerable errors. H. V. Vol'kenshteyn, M. A. Yel'yashevich, B. I. Stepanov, L. S. Mayants, L. A. Ignat'yev, and I. K. Bayev are mentioned. There are 3 figures and 5 references: 3 Soviet-bloc and 2 non-Soviet-bloc. Moskovskiy energeticheskiy institut (Moscow Institute of Power Engineering) ASSOCIATION: September 14, 1960, by P. L. Kapitsa, Acedemician PRESENTED: August 24, 1960 SUBMITTED: gard 3/5 CIA-RDP86-00513R001963230004-FOR RELEASE: 09/19/2001

"APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R001963230004-3

PA - 2371 Investigation of the Heat Exchange and Reduction Process when using a Fluxed Sinter.

of limestone it increases up to 1100 - 1150°. In those parts of the charge column, which are most charged, steady concentrations of CO₂ were found to exist. Reduction velocity is here low, the highest being found in the upper and lower part of the column. During charging the ores divide mechanically into such with a great procentage of iron and into such with a small percentage of iron, a fact which facilitates the formation of primary slag, but reduces gas permeability to some extent. On the occasion of the formation of primary slags, those slags play an essential part which are conveyed from deeper horizons by the gas current.

ASSOCIATION: Metallurgic Combinate of Megnitogorsk

PRESENTED BY:

SUBMITTED:

AVAILABLE: Library of Congress.

Card 2/2

SOV/133-58-12-2/19 Babarykin, N.N., Engineer, and Yushin, F.A. AUTHOR:

Changes in the Blast Furnace Process when Operating with TITLE:

Fluxed Sinter (Izmeneniya domennogo protsessa pri

rabote na oflyusovannom aglomerate)

PERIODICAL: Stal', 1958, Nr 12, pp 1057-1065 (USSR)

ABSTRACT: An investigation of the blast furnace process during operation with fluxed sinter was carried out on three furnaces A, B and V in the Magnitogorsk Works and the results obtained compared with previous similar investigations. The working volumes of the furnaces: $A - 1180 \text{ m}^3$, B and $V - 1371 \text{ m}^3$. The profiles of the furnaces and the position of levels at which sampling and measurements were carried out are given in Fig 1, and main operating data in Table 1. Sampling of the burden, the determination of temperature and composition of gas on the second and third levels were carried out on furnace B, a study of the composition of materials and gases along the bosh radius on furnace A, and of the composition and temperature of gases in the upper part of the stack and in the hearth on furnace V. Sampling

Card 1/5 of materials from the stack and the bosh was carried out

APPROVED FOR RELEASE: 09/19/2001

Changes in the Blast Furnace Process when Operating with Fluxed Sinter

with uncooled tubes of internal diameter 51 and 57 mm as was previously described (Ref 1). Materials from the tuyere zone were sampled with a special water cooled probe with a number of parallel cylindrical pockets (Fig 2). The temperature measurements in the stack were done with uncooled chromelalumel thermocouples. In the bosh and tuyere zone, thermocouples were cooled and on the lowest level molybdenum-tungsten thermocouples with quartz, graphite, molybdenum and berylium oxide sheaths were tested. The pressure, temperature and the composition of gas along the height of the burden column were determined as in Ref 1. Changes in the content of carbon dioxide (A) and temperature (B) along the furnace radius on I - IV levels are shown in Fig 3 (a - measurements in 1955, b - in 1956-57); the distribution of isotherms (A; °C) and lines of equal concentration of carbon dioxide (B; %) in the furnaces - Fig 4; changes in the static pressure along the height of the furnace - Table 2 and Fig 6 (a - 1956, b - 1957); the distribution of temperatures along the height of the furnace - Fig 5;

Card 2/5

SOV/133-58-12-2/19

Changes in the Blast Furnace Process when Operating with Fluxed Sinter

> chemical composition of burden materials on various furnace levels - Table 3; lines of equal mean degree of reduction - Fig 7 (results for 1956-57 A; for 1955 - B); mean chemical composition of metal beads collected from 3rd and 4th levels - Table 4; mean chemical composition of metal and slag from tuyere zone - Tables 5 and 6 respectively. It is concluded that: 1) the largest non-uniformity in the degree of reduction of iron oxides along the diameter was observed in the upper part of the stack. This non-uniformity decreases as the burden descends towards lower levels. Mean degree of reduction of iron oxides for successive levels I-IV amounted to: % I - 22.6; II - 32.5; III - 57.6; IV - 85.7. An increase in the development of the reducing processes in the zone of moderate temperatures leads to a considerable improvement in the operating indices of a blast furnace. The analysis of changes in the content of sulphur on various levels supports the supposition that it circulates in the lower part of the burden column.

Card 3/5 The temperature range within which fluxed sinter attains

sov/133-58-12-2/19

Changes in the Blast Furnace Process when Operating with Fluxed

Sinter

a softened state decreases with increasing degree of reduction of iron oxides. In order to secure an even and stable furnace operation the zone of softening of the burden (which forms an additional resistance to the passage of gas) should be maintained on the level of the bosh or the hottom part of the stack. The formation of bosh or the bottom part of the States by a steady sepa-droplets of a liquid phase is preceded by a steady separation of metal and slag inside lumps of sinter. good burden preparation the content of ferrous oxide in the primary slag is low and does not present any difficul-ties to an intensification of the rate of furnace driving. The presence of liquid slag in the mass of "dry" burden can be apparently explained by its being blown from lower furnace levels, as well as by considerable differences in the level of heat requirements of lumps of burden with an unequal degree of chemical proparation. The maximum gas temperature in the tuyere level (about 1990°C) was established to be at a distance of 0.4 m from the tuyere nozzle. A partial transfer of sulphur from metal and

Changes in the Blast Furnace Process when Operating with Fluxed Sinter

slag into the gaseous phase takes place in the oxidising zone. The main mass of metal and slag flows down into the hearth through a peripheral zone the width of which does not exceed 2m from the furnace wall.

There are 7 figures, 6 tables and 4 references (all Soviet).

ASSOCIATION: Magnitogorskiy metallurgicheskiy kombinat (Magnitogorsk Metallurgical Combine)

Card 5/5

CIA-RDP86-00513R001963230004-3 "APPROVED FOR RELEASE: 09/19/2001

SOV/133-59-4-1/32

AUTHORS:

Babarykin, H.N., Agashin, A.A. and Yushin, F.A.,

Engineers

TITIE:

Determination of the Active Weight of Burden in an Operating Blast Furnace (Opredeleniye aktivnogo vesa shikhty v deystvuyushchey domennoy pechi)

PERIODICAL: Stal', 1959, Nr 4, pp 289-291 (USSR)

ABSTRACT:

It is understood that the active weight of burden (kg/cm2) means the difference between the vertical pressure of the burden and the gas pressure supporting the burden: Qa = Qr - Pg. An analytical method of determining vertical pressure of the blast furnace burden based on Jansen's formula is proposed. Experimental determinations of the active weight of the burden at various furnace levels (down to 14.5m from the stock level) in an operating furnace were carried out. The measuring method was based on introducing a probe tube into the burden to a required level and measuring with a dynamometer (fig 1) the force required to retain the tube in the stationary state. The experimental set up is shown in Fig 2. results of the determinations of static pressure of gas

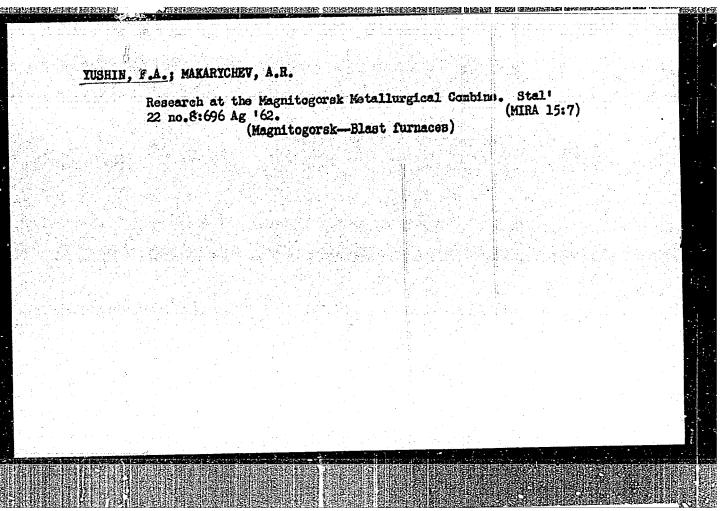
Card 1/3

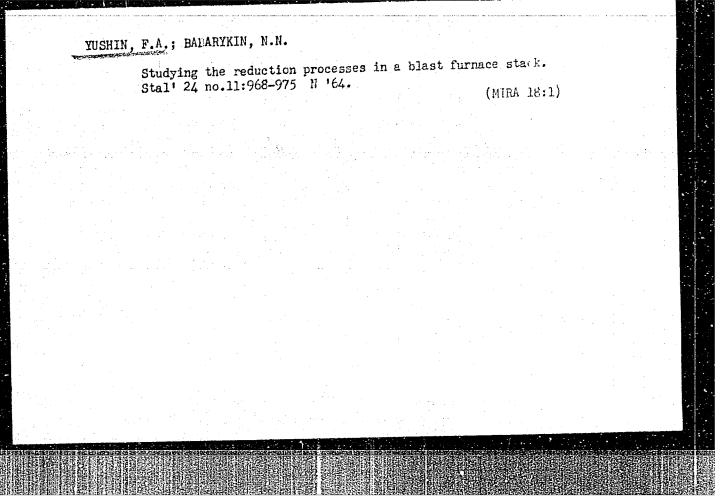
SOV/133-59-4-1/32

Determination of the Active Weight of Burden in an Operating Blast Furnace

and active weight of the burden as well as calculated values for vertical pressure of the layer of burden material at various furnace levels are assembled in the table. The experimental and calculated values for the vertical pressure of the burden within the limits of the "dry" zone agreed well (fig 3). The experimental data on changes in the degree of participation of the active weight in the vertical pressure of burden characterising the degree of driving of the blast furnace (the amount of passing gases) indicate that under conditions of a high top pressure operation the upper half of the furnace could be driven harder. This reserve of driving capacity of the upper part of the furnace can be utilised by blowing into the furnace

Card 2/3

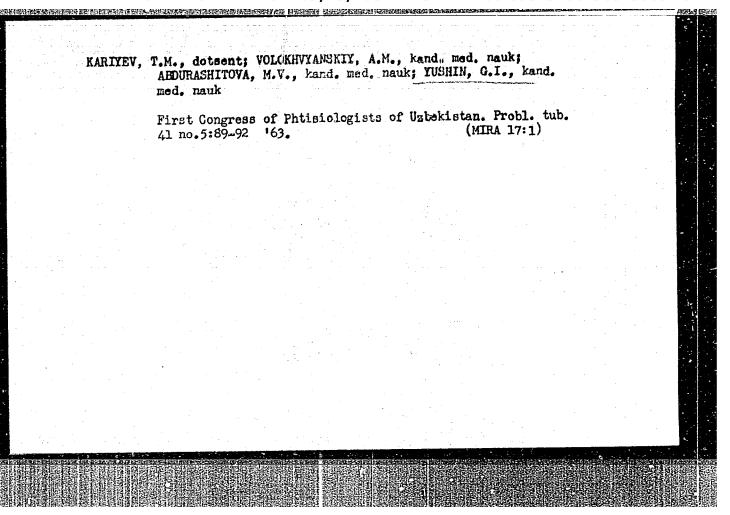

SOV/133-59-4-1/32


Determination of the Active Weight of Burden in an Operating
Blast Furnace

stack some reducing gases. There are 3 figures,
1 table and 1 Soviet reference.

ASSOCIATION: Magnitogorskiy Metallurgicheskiy Kombinat
(Magnitogorsk Metallurgical Combine)

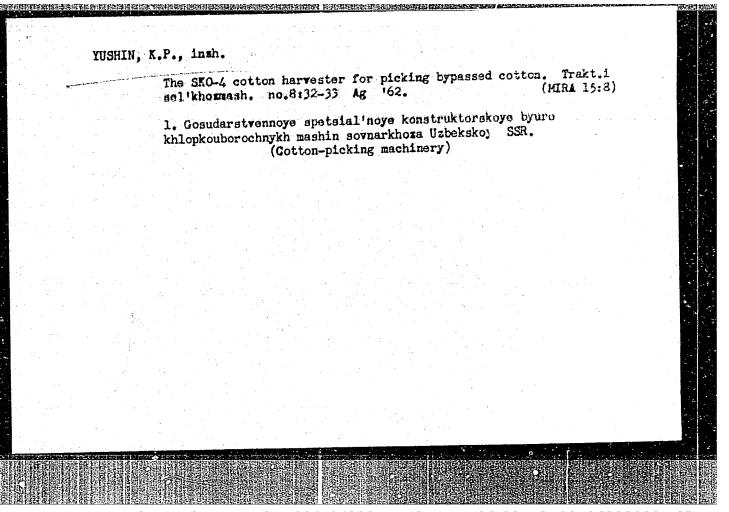
Card 3/3



Intrustations in blast furnace downtakes. Stal' 25 no.2; 112-114 F'65. (MIRA 18:3) 1. Magnitogorakiy metallurgicheskiy kombinat.

AGASHIN, A.A.; BABARYKIN, N.N.; VOLKOV, Yu.P.; GALATONOV, A.L.; KRYUKOV, N.M.; MALIKOV, K.V.; OSTROUKHOV, M.Ya.; PISHVANOV, V.L.; CHERNYATIN, A.N.; YUSHIN, F.A.

Experimental operation of blast furnaces on mazut and natural gas. Stal' 25 no.5:393-400 My '65. (MIRA 18:6)


1. Magnitogorskiy metallurgicheskiy kombinat; Vsesoyuznyy nauchnoissledovatel skiy institut metallurgicheskoy teplotekhniki i Chelyabinskiy nauchno-issledovatel skiy institut metallurgii.

YUSHIN, K.P., inzhener: AKOPYAN, G.H.

The SKN-4, new machine for harvesting underdeveloped cotton. Sel'khozmashina no.10:5-6 0'55. (MIRA 8:12)

1. Gosudarstvennoye spetsial noye konstruktorskoye byuro po khlopku (Cotton-picking machinery)

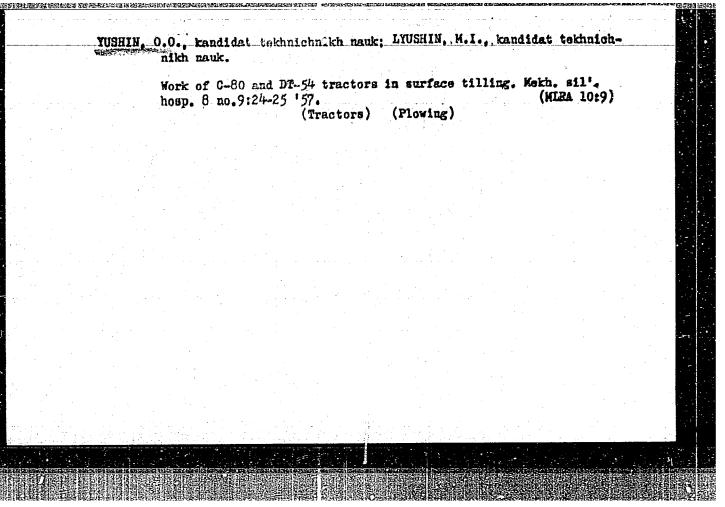
APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R001963230004-3"

107-57-2-50/56

AUTHOR: Yushin, N. (Aleksandrov)

TITLE: About the Performance of the "Rekord" TV Set. Experience Exchange (0 rabote televizora "Rekord". Obmen opytom)

PERIODICAL: Radio, 1957, Nr 2, p 56 (USSR)


ABSTRACT: The town of Aleksandrov is situated 111 km northeast of Moscow.

Early commercial Soviet TV sets required additional equipment for reception in Aleksandrov. However, the "Rekord" TV set, fed by a 2-channel directional antenna, can function adequately without additional equipment. The antenna used by the author is described in "Radio", Nr 4, 1956.

There is 1 Soviet reference in the article.

AVAILABLE: Library of Congress

Card 1/1

TUSHIN, 0.0., kand.tekhn.nauk

Hethods for investigating dynamic indices of wheeled tractors.

Kekh. sel'. hosp. 9 no.9:28-30 S '58. (MIRA 11:10)

(Tractors)

VASIL'YEV, A.N., inzh.; GOROKHOV, N.G., inzh.; YUSHIN, P.V., inzh.

Production of 20KhGNR steel at the Kuznetsk Metallurgical Combine. Stal' 23 no.12:1085-1086 D '63. (MIRA 17:2)

1. Kuznetskiy metallurgicheskiy kombinat.

VCRCZHISHCHEV, V.I., inzh.; YUSHIN, P.V., inzh.; MASLOVA, V.N., inzh.

Effect of aluminum on the contamination by normetallic inclusions, the plasticity at high temperatures, and the mechanical properties of steel. Stal! 25 no.8:852-854 S 165. (MIRA 18:9)

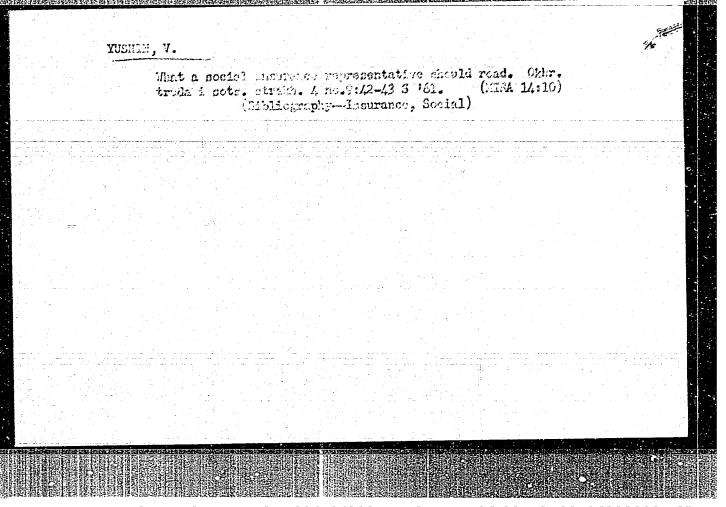
1. Kuznetskiy metallurgicheskiy kombinat.

ZHIL'TSOV, V.R.; ZELENOV, A.F.; KOKIN, A.G.; KOLOSOV, V.A.;

KOROBITSYN, M.D.; MALYAVINSKIY, A.M.; NEFEDOV, Ya.D.;

PAVLOV, A.V.; STEPAROV, Yu.A., prof.; SUWOROV, V.G.;

YUSHIN, S.I.; POCHTAREV, N.F.; kand. tekhn. nauk, inzh.
polkovnik, red.; KUZ'MIN, I.F., tekhn. red.


[Internal combustion engines; design and performance] Dvigatell vnutrennego sgoraniia; ustroiatvo i rabota. [By] V.R.

Zhil'tsov i dr. Pod red. IU.A.Stepanova. Maskva, Voen. izd-vo

M-va obor. SSSR, 1955. 470 p.

(Internal combustion engines;)

(Internal combustion engines;)

APPROVED FOR RELEASE: 09/19/2001 CIA-RDP86-00513R001963230004-3"

DRCESCRO, A. Ya.; VISITE, V. G.

"Research in the Field of the Folymerization and brying of Odls and leters of Matty Acids," Part III.

"The Heat of Brying of Linesed Oil," Zhur. Coshch.

Khia., 10, No. 23-24, 19h0. Laboratory of the Tochnology of Lacquers and Paints. Leningrad Chemico-Technological Institute. Received 26 November 1939.

Report U-1612, 3 Jan 1952

"APPROVED FOR RELEASE: 09/19/2001

CIA-RDP86-00513R001963230004-3

L 34071-66 ENT(d)/T IJP(c)

ACC NR. AP6013014

SOURCE CODE: UR/0410/66/000/001/0096/0100

AUTHOR: Yushin, V.I. (Novosibirsk)

9

ORG: none

TITLE: The influence of the spread of switch-on times on the determination of correlation functions of nonstationary processes [Paper presented at the 7th All-Union Conference on Automatic Control and Methods of Electrical Measurements held in Novosibirsk in September 1965]

SOURCE: Avtometriya, no. 1, 1966, 96-100

TOPIC TAGS: correlation function, correlation statistics, computer application, random process

ABSTRACTS: The evergrowing use of computers made the practical use of the results of the theory of nonstationary random functions possible. This, in turn, prompted the study of errors in the measurement of correlation functions of nonstationary processes which are of importance during the averaging over the set. The present note deals with one of the most specific errors of set correlation caused by the spread of the switch-on times and by the presence of stationary additive perturbation. The correlator is assumed to follow the algorithm

 $R_{xy}(t, \tau) = \frac{1}{N} \sum_{m=1}^{N} \left[x_{l} \left(t + \frac{\tau}{2} \right) - m_{x} \left(t + \frac{\tau}{2} \right) \right] \left[y_{l} \left(t - \frac{\tau}{2} \right) - m_{y} \left(t - \frac{\tau}{2} \right) \right], \tag{1}$

Card 1/2

UDC: 681.142.82

ACC NR: AP											0	
where R _{xy} (t _i nonstationary N - the total \mathcal{C} - time shif Orig. art. ha	processes number of t t between th	X(t) and Yealizations to realizati	(t) ; $m_{\chi}(t)$	and my	(t) - re	apect	146 111	t - th	e rest	time:	and	
SUB CODE:			EGones /	ORIG	REF.	001						
SUB CODE:	OR'NA ROBE	i DAIE: 2	osepoo /	Ollia								
			•									
									:			
				7 -			*,					
	e Turktoria											
									· · · · · · · · · · · · · · · · · · ·			
											į.	
										• •	•	
Card 2/2	Do								·			
Cara .					. [
er inner over the inner over	e reconstruction and a second	and the same of the		decementary	te representation	a la caración de la c	ersearcher.	गरका है।	interior are or	i en antonomia	SAFER STRINGS	\$ \$2.342.00

"APPROVED FOR RELEASE: 09/19/2001

CIA-RDP86-00513R001963230004-3

L 03012-67 ENT(d)/T IJP(c)

ACC NR: AP6028700 SOURCE CODE: UR/0410/66/000/003/0113/0121

AUTHOR: Yushin, V. I. (Novosibirsk)

28 B

ORG: none

TYTLE: Optimum averaging intervals in the determination of statistical characteristics of a nonstationary process according to a single realization

SOURCE: Avtometriya, no. 3, 1966, 113-121

TOPIC TAGS: statistic analysis, correlation statistics, random process

ABSTRACT: In the determination of statistical characteristics of nonstationary random processes by averaging over the set of realizations, the large volume of computations required has led to the search for simpler procedures. The present author investigates the mean square errors of the determination of mathematical expectation and dispersion of a class of nonstationary random processes using the sliding averaging of a single trial. The results are in the form of expressions for optimum averaging intervals obtained using the minimum mean square error criteria. The knowledge of the mean correlation function of the process, of the mean correlation function of the square of the process, and of the correlation functions of the mathematical expectation and correlation are required. Rough estimates of all these functions can be made

Card 1/2

UDC: 681.142.82

	P60287				latta-	funatio	na Or	de or	hog•	55 for	0	
asily for as and 1	normal able.	processes	Min expo	dentiat coi	Leisiton.	Innerio	us. Or	rg. ar	e nas	90 101	1116	
UB COD	E: 12/	SUBM DA	TE: 250c	t66/ ORI	G REF:	003/	OTH RI	EF: 00	1			
		• * *		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -							-	
	<u> </u>											
•••												
Card 2/1	, eq	h										

DERBIKOV, I.V.; AGUL'NIK, I.M.; BEN'KO, Ye.I.; YEKHANIN, Ye.V.; GRISHIN, M.P.; YUSHIN, V.I.

Tectonics of the Mesozoic and Cenozoic mantle of the Western Siberian Lowland. Trudy SNIGGIMS no.11:63-155 '60. (MIRA 14:5) (Siberia, Western-Geology, Structural)

Stratigraphic Cretaceous and Trudy SNIGGIMS	Paleogene sono.6:150-1 (Ob)	horizons wi adiments of 62 '61. ValleyIr	th iron dep- the middle on ores)	ob' Valle (M)	ipper ly. (RA 15:7)	
						٧.
			a et	· · · ·		

ACC NR. AP6021476

SOURCE CODE: UR/0413/66/000/011/0102/0102

INVENTOR: Yushin, V. I.

ORG: None

TITLE: A digital correlator with magnetic drum memory. Class 42, No. 182414 [announced by the Institute of Automation and Electrometry, Siberian Department AN SSSR (Institut avtomatiki i elektrometrii Sibirskogo otdeleniya AN SSSR)]

SOURCE: Izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, no. 11, 1966, 102

TOPIC TAGS: magnetic drum, computer component, digital system, flip flop circuit

ABSTRACT: This Author's Certificate introduces a digital correlator with magnetic drum memory. The installation contains an arithmetic unit which includes an addermultiplier. Also included in the device are input and output units and a control unit. The correlator is designed for dealing with a large class of problems: operation as a matching filter, computation of the instantaneous correlation function and of the correlation function of nonstationary processes with averaging according to a set of realizations. In the control unit, the output of the device which forms the pulse for commencing readout is connected to the pulse inputs of the first and second switches whose potential inputs are connected respectively to the one and zero states of the first flip-flop. Connected to the set terminal of the first flip-

Card 1/6

UDC: 681.142

ACC NR: AP6021476

flop are the input of the first potential polarity-reversing amplifier and the zero state of the second flip-flop (through a differential network). The output of the polarity-reversing amplifier is connected to the reset terminals of the first and third flip-flops and to the set terminals of the fourth and fifth flip-flops. The set terminal of the third flip-flop is connected through a differential network to the output of the first univibrator. The zero state of the fifth flip-flop is connected through a differential network to the input of this univibrator. The one state of the third flip-flop is connected to the potential input of the third switch, while the pulse input of this switch is connected to the output of the first switch. The output of the third switch is connected to the input of the second univibrator whose cutput is connected through a differential network to the reset terminal of the first flip-flop. Connected to the reset terminal of the second flip-flop are the output of the second switch and the "initial state" bus. The set terminal of the second flip-flop is connected to the output of a revolution counter. The output of the circuit which shapes the synchro pulses for the cells is connected to the pulse outputs of the fourth and fifth switches whose potential inputs are connected respectively to the one and zero states of the sixth flip-flop. The output of the first polarity-reversing amplifier is connected to the reset terminal of the sixth flip-flop, while the output of the first switch is connected to the set terminal of this flip-flop. The output of the fourth switch is connected to the pulse input of the sixth switch, while the one state of the fourth flip-flop is connected to the potential input of the sixth switch. The output of the sixth switch is connected to

Card 2/6

ACC NR: AP6021476

the inputs of the seventh and eighth switches and that of the third univibrator. The output of this univibrator is connected through a differential network and an amplifier to the pulse inputs of the ninth and tenth switches. The output of the first switch is connected to the counting input of the fourth flip-flop. The one state of the fourth flip-flop is connected to the potential input of the sixth switch and to the inputs of the first, second and third coincidence circuits, and also through a differential network to the counting input of the fifth flip-flop. The reset terminal of the fifth flip-flop is connected to the potential inputs of the ninth and tenth switches and to the first inputs of the first and second coincidence circuits. The set terminal of the fifth flip-flop is connected to the potential inputs of the seventh and eighth switches and to the first input of the third coincidence circuit. The second input of the first coincidence circuit is connected to the zero state of the seventh flip-flop whose reset terminal is connected through a differential network to the zero state of the fifth flip-flop. The set terminal of the seventh flip-flop is connected to the output of the collector circuit in the operational control unit. Connected through the collector circuit to the reset terminal of the eighth flip-flop are the output of the device which forms the pulse for commencing readout and the output of the tenth switch. The output of the eighth switch is connected to the set terminal of the eighth flip-flop. Connected to the reset terminal of the ninth flip-flop are the output of the device which forms the pulse for commencing readout and the output of the seventh switch. The output of the minth switch is connected to the set terminal of the minth flip-flop. The one

Card 3/6

ACC NR: AP.6021476

states of the eighth and ninth flip-flops are connected to the inputs of the first and second repeaters respectively. In the memory, the output of the first repeater is connected to the switch inputs of the readout emplifiers for the main shifting and nonshifting tracks. The output of the second repeater is connected to the switch input of the readout amplifier for the auxiliary track. The inputs of the readout emplifiers are connected to the readout windings of the corresponding heads. The output of each readout amplifier for the nonshifting track is connected to the set terminal of one of the four flip-flops for the nonshifting process. The outputs of the amplifiers for the shifting and auxiliary tracks are connected in pairs to four collector circuits whose outputs are connected to the set terminals of the corresponding flip-flops in the register for the shifting process. The outputs of the eighth and ninth switches are connected through the collector circuits to the bus for resetting the registers of the shifting and nonshifting processes. The one state of the fifth flip-flop is connected through a differential circuit, amplifier and relay contact which is closed in the "matched filter" state and open only during computation with cyclic shift to the circuit for resetting the register of the shifting process and to the pulse inputs of four switches whose potential inputs are connected to the data input, while their outputs are connected to the set terminals of the corresponding flip-flops in the register for the shifting process. Also incorporated in this unit is a shift cycle counter which has one input and two outputs. The input of the counter is connected through a differential network to the zero state of the fifth flip-flop. The zero state of the seventh flip-flop is connected through a dif-

Card 4/6

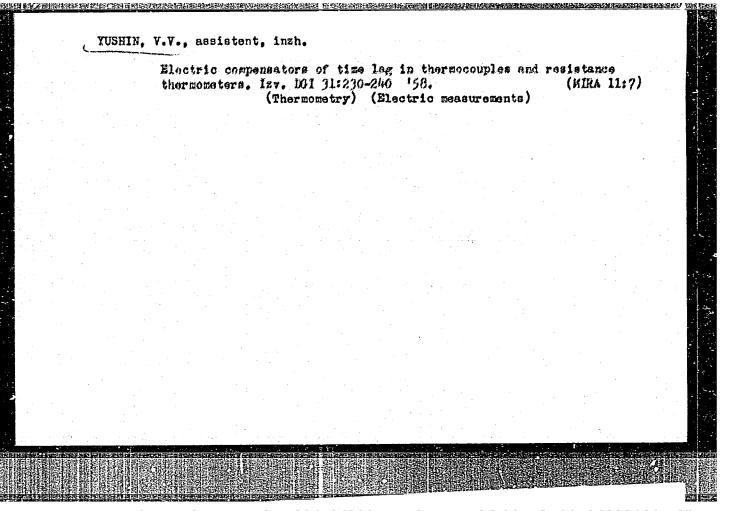
ACC NR: AP6021476

ferential network and an amplifier to the pulse input of the eleventh switch, while the zero state of the tenth flip-flop is connected through the same circuit to the pulse input of the twelfth switch. The outputs of the eleventh and twelfth switches are connected through the collector circuit to the set terminal of the seventh flip-The output of the eleventh switch is also connected to the reset terminal of the tenth flip-flop. The potential inputs of the eleventh and twelfth switches are connected to the one and zero states respectively of the tenth flip-flop. The output of the second potential polarity-reversing amplifier is connected to the set terminal of the tenth flip-flop and to the shift cycle counter reset. The input of this amplifier is connected to the zero state of the eleventh flip-flop. The "initial state" bus is connected to the reset terminal of the eleventh flip-flop, while a start pulse source is connected to its set terminal. The output of the second switch is connected to the pulse inputs of the thirteenth and fourteenth switches, while the output of the fifth switch is connected to the input of the fifteenth. The one state of the eleventh flip-flop is connected to the potential inputs of the thirteenth and fifteenth switches. The zero state of the twelfth flip-flop is connected to the potential input of the fourteenth switch. The reset terminal of the twelfth flip-flop is connected to the panel. The output of the fourteenth switch is connected through the collector circuit to the input of the third univibrator whose output is connected through a differential network to the set terminals of the eleventh and twelfth flip-flops. The second input of the collector circuit is connected to the output of an expectation circuit. The output of the thirteenth switch is

Card 5/6

ACC NR: AP6021476

connected to the reset terminal of the eleventh flip-flop, to the input of the revolution counter, and the ouput of the fifteenth switch is also connected through the collector circuit to the input of the cell counter. The output of the fifteenth switch is also connected through the collector circuit to the reset bus for the registers of the shifting and nonshifting processes. The output of the cell counter is connected through an amplifier two the pulse inputs of two groups of switches whose potential inputs are connected to the one states of the flip-flops in the registers of the shifting and nonshifting processes. The outputs of these two groups of switches are connected to the arithmetic unit. The output of the revolution counter is connected to the set terminal of the second flip-flop. The cell and revolution counters have an equal number of flip-flops.


SUB CODE: 09/ SUBM DATE: 21Aug65

Card 6/6

PETROV, P.S., dots.; BORISKIN, S.V., dots.; VASILENKO, N.A., starshiy prepod.; GERSHANOV, Ye.M., dots.; DEMENT'YEVA, A.N., starshiy prepod.; IL'IN, V.P., dots.; NIKITIN, D.P., starshiy prepod.; NIKITIN, D.P., starshiy prepod.; SHRAMGHENKO, K.G., starshiy prepod.; YUSHIN, V.I., starshiy prepod.; POFOV, A.S., red.; MESHALKIN, V.I., tekim. red.

[Book of the trade-union committee chairman; aid to the factory, plant and workshop committee chairman]Kniga predsedatelia komiteta profsoiuza; v pomoshch predsedateliu fabrichnogo, zavodskogo, tsekhovogo komiteta. Moskva, Profizdat, 1962. 356 p. (MIRA 16:2)

1. Moscow. Vysshaya zeochnaya shkola profdvizheniya. 2. Kafedra "Profsoyuznoye stroitel stvo" Moskovskoy vysshey zaochnoy shkoly prodvizheniya Vsesoyuznogo tsentral nogo soveta profsoyuzov (for all except Popov, Meshalkin). (Trafe unions—Handbooks, manuals, etc.)

